Hornby K1 EM Finescale Conversion.

Before you start, it is a good idea to have some small containers or snap top poly bags to put screws and components in for safe keeping.....much better than crawling about on the floor trying to find lost bits!

We suggest converting the tender first, as this will be needed to test the loco chassis later because of the electrical engine/tender connection plug and socket. Disconnect the two carefully before starting work.

TENDER CONVERSION

1. Invert the tender, and hold in a suitable device. We use a foam cradle – the Peco loco service cradle being ideal.

2. Unclip the brake gear, and place to one side.

3. Undo the three screws holding the keeper plate – two are visible, the third being beneath the water scoop, which was glued in position on our sample, so had to be removed and glued back in position on reassembly.

Keeper plate removed and one Gibson wheel set installed.

4. Lift out the 3 wheel sets.

5. Assemble the Gibson wheel sets onto the appropriate plain axle supplied with the wheels. We used 2x1mm 2mm bore spacing bushes each side to limit side play.

Enlarged view showing spacers on Gibson wheel set.

6. Place wheel sets into the chassis, ensuring the pickup wipers bear against the back of the wheel tyres.

7. Before replacing the keeper plate, chamfer the back of the brake shoes with a needle file to provide clearance with the wheel tyre/flange.

- 8. Replace the keeper plate and screws. Push test the tender through some track work to ensure all is well.
- 9. If satisfied, replace the water scoop moulding by gluing back into position.

10. Clip brake rods back into position.

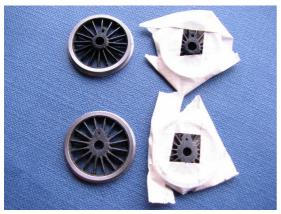

LOCO CONVERSION

1. Remove the loco pony truck by undoing the screw behind the rear of the pony truck on the loco chassis, and place to one side.

2. Remove the loco body by undoing the screw down the deep hole under where the pony truck was. Also undo the engine to tender screw under the cab. Gently pull the chassis out by gripping the cylinders – not the wheels/valve gear.

3. Support the chassis upside down in a suitable cradle.

4. Undo and remove the crankpin screws, remove the return cranks and connecting rods and leave dangling. Recover the coupling rods and place to one side.


Removing rods.

5. Undo the remaining 3 cross head screws in the keeper plate - store these safely – and gently tease the keeper plate upwards and away from the chassis. There are no wires to worry about in this loco between keeper plate and chassis.

6. The wheel sets should now lift out.....but do note how the various axle bushes sit in the chassis!

7. Remove the wheels from the axles – we need to recover and reuse the brass bushes from all 3 axles, as well as the gear wheel. The bushes simply slide off, but the gear needs to be pushed off. Simply support the axle end on a solid surface, pushing straight down with your thumbs. The gear should slide off. Do not TWIST the gear, as it sits on a knurled part of the axle and you may damage the inside surface of the gear bore.

8. The Gibson wheels can now be prepared – see below- and crankpins inserted and any balance weights made up and glued on. We make these from 10 thou plasticard and use a compass cutter. The supplied axles were reduced to 21.2mm in length.

Gibson wheels showing stages in modifying.

The K1 wheel has a flat boss, so I decided to remove the boss as supplied. The tyres were covered in masking tape, and the boss filed of carefully flush with the tyre face. The masking tape prevents the tyre being marked.

This picture shows the completed wheels with crankpins and balance weights.

9. Now begin to assemble the front and rear wheel sets. We will need some spacing washers to take up the side play. We used 2 x 1mm, plus 1 x 0.5mm each side on the centre and rear axles. The front axle had a 0.25mm thick washer in addition each side, as all side play must be eliminated on this axle behind the valve gear crossheads.

10. We use a GW Models wheel press for assembly, which will also quarter the wheels as well as press them on square.

Assembled wheels for front or rear.

11. These two wheel sets can now be placed in the chassis.

Front wheel set installed.

12. The centre axle needs to be "knurled" for the gear wheel first. We place the plain axle into the chassis, measuring. The overhang each side to make sure it is central. Take a permanent marker pen, and mark the position of the gear on the axle.

The black dot marks the spot!

13. Place the axle on a cutting mat or similar. Take a small hand file, we use a 4 inch second cut file, and using the file on Edge, roll it with firm downward pressure over the axle where you marked the gear position. Do not stray away from this narrow area, as bushes run on the axle very close to the gear, and knurling in these areas won't help good running!

Not too neat....but it works!

14. The gear can now be slid onto the axle and pressed over the "knurling". We found that the side of the gear was 7mm from the axle end (shorter end!) Place in the chassis and check...if all is well you can slide the gear to one side, apply a little Loctite, replace and check gear is in the correct position. Leave alone to cure. Treat yourself to a cuppa or similar.....hic!

Assembled axle and Hornby gear.

15. Once the Loctite has cured, assemble the driven axle in the press with spacing washers and the Hornby bushes. Make sure you put the narrow Hornby bush on the right way round! It's all so easy to get it wrong!!

Assembled driven axle.

Centre axle installed.

16.Before we replace the keeper plate, chamfer the rear of the brake shoes with a needle file to make sure the brakes do not foul the wheels.

17.Lift the keeper plate back into position, and fasten down with the four screws. You can now place on the track and apply a little power to make sure the driven axle revolves freely. Remember to connect the tender plug otherwise it won't work!

18.Next we tackle the coupling rods and the connecting rod big ends. The Hornby holes are too large for Gibson crank pins, so we need to bush them with the Gibson bushes available just for this purpose.

First, file the plating back to the brass base metal on the rear of the rods. Place a bush in the rod hole, and solder in position. Do this for all 6 coupling rod holes, and do the connecting rods by laying the chassis on its side, working on the rear of the rod which is face down on the work surface.

If you fill the bush completely with solder.....don't panic! As the solder sets, it contracts slightly, leaving a dimple in the centre – use this to as your centre for drilling out. A suitable drill twiddled with fingers in a pin vice is all that is needed.

Bush in rod ready for soldering.

The resulting central dimple after over enthusiastic soldering.

19. The bushes then need a gentle opening out to be a good running fit on the crankpin bushes....simply use a suitable cutting broach and use one of the Gibson bushes as a guide.

20. Assemble the rods onto the wheels. Use a long crankpin bush on the centre wheels, and short ones front and rear. Fasten with crankpin nuts front and rear only. Tighten and trim back the front crankpins, and file the nuts to about half their thickness, in order to give clearance for the connecting rod. The rear pins can be left for now if you wish.

21. The Hornby return crank is not much use to us as it fastens in a different way, so we remove these using side cutters, (your best Zurons are ideal!) under the head of the valve gear rivet.

Return crank removed from rod.

22.Next we prepare the new Gibson return cranks. These need tapping 14BA, and we do this with the cranks still attached to their sprue as it makes holding easier. The tap is held in a pin vice rather than a normal tap wrench – much easier to use.

Once tapped, they can be cut from the sprue and cleaned up.

Return cranks as supplied with a prepared pair and tap alongside.

23. Wind a crank onto one of the centre crankpins, and naturally it will go tight and stop in the wrong position! Undo, file a small amount from the rear face of the crank boss, and try again. It will now be tight at a point further round, so by trial and error, we get it to tighten at the correct angle. Repeat for the opposite side, then remove, but make sure you know which one fits which side.

Fitting the return cranks.

24. Lay the chassis on its side, so that the rod is pointing away from the chassis. Place a valve gear rivet into the rod hole .Then place a small piece of paper over the rivet, with the correct return crank on top of that. Solder the rivet to the crank, and then tear out the piece of paper. Hopefully, the crank will be free to revolve...... Clean up the excess rivet and solder.

Rod with rivet in place through hole.

Paper placed over rivet with crank placed on top ready to solder.

25. The connecting rod should be lifted onto the crankpin and bush, the return crank can now be wound on and tightened. This is easier to accomplish with the wheels rotated so that the crankpins are halfway between six and seven o'clock......so that the attached valve gear can move about without binding as the crank is tightened.

26. Repeat for the opposite side, and remember to move the wheels so the crankpins are at the six to seven o'clock position. You can gently, repeat gently! Move the wheels the small amount required under power.

What the valve gear should now be like!

27.At this point, you should be able to track test the completed valve gear. Gently apply power, checking to ensure no parts are going to hit other parts or bind. If all is well, admire your chassis and tender moving around!

THE PONY TRUCK

1. Simply twist and pull one Hornby wheel from its axle, and slide the remaining wheel and axle out the other side.

 Assemble one Gibson wheel onto its axle, and then slide the appropriate spacing washers on, thread through the pony truck casting hole, adding the appropriate spacing washers and remaining wheel. We used 2 x 1mm 2mm bore spacing washers each side.

Re wheeled pony truck showing spacing washers.

FINAL ASSEMBLY

The chassis can be re united with the body and the pony truck inserted under the front of the keeper plate which will need the front 2 screws slackening to allow the truck to be slipped into position.

Engine and tender may be reconnected with the coupling bar and the electrical socket.

Do not forget to lubricate the new axles either!

Pete Hill February 2015

Parts used

4800/19 Driving Wheel Pack 4M42B Crankpin Set 4838 Pony Wheel 4844B Tender Wheels 4M67/3 Spacing Washers 4M67/2 Spacing Washers 4800 Coupling Rod Bushes 4M822 Reversing Cranks